Zawartość
Statystyka T jest wykorzystywana do obliczania statystyki dla małych prób (to znaczy, gdy wielkość próby, n, jest mniejsza lub równa 30), i zastępuje statystykę Z. Statystyka t jest konieczna, ponieważ odchylenie standardowe populacji, zdefiniowane jako miara zmienności w populacji, nie jest znane dla małej próby. Z drugiej strony, statystyki T pozwalają na zastosowanie odchylenia standardowego próbki, które mierzy określoną zmienność próbek i jest bardziej odpowiednie dla próbek o mniejszych rozmiarach.
Znalezienie wartości
Znajdź średnią próbki x-bar. Oblicza się to przez dodanie wszystkich wartości w próbce i podzielenie przez liczbę jednostek w tym zsumowaniu, n. W niektórych przypadkach wartość ta zostanie domyślnie podana.
Znajdź średnią populacji, μ (grecka litera mu). Możesz obliczyć tę wartość, dodając wszystkie wartości w obserwowanej populacji, a następnie dzieląc przez liczbę jednostek w tym podsumowaniu, n. Ta wartość jest często podawana domyślnie.
Obliczyć odchylenie standardowe próbki, s. Zrób to, biorąc pierwiastek kwadratowy z wariancji, jeśli jest podana. Jeśli nie, znajdź wariancję: Weź wartość w próbce, odejmij ją od średniej próbki i wyrównaj różnicę. Zrób to dla każdej wartości, a następnie dodaj wszystkie wartości razem. Podziel tę całkowitą wartość przez liczbę jednostek w obliczeniu pomniejszoną o 1 lub n-1. Po znalezieniu wariancji weź pierwiastek kwadratowy z niej.
Oblicz statystykę T.
Odejmij średnią populacji od średniej próbki: x-bar - μ.
Podziel s przez pierwiastek kwadratowy z n, liczbę jednostek w próbce: s ÷ √ (n).
Weź wartość uzyskaną z odejmowania μ od x-bar i podziel ją przez wartość uzyskaną z podzielenia s przez pierwiastek kwadratowy z n: (x-bar - μ) ÷ (s ÷ √).