Zawartość
Trapez jest czworobocznym kształtem geometrycznym, charakteryzującym się dwoma równoległymi i dwoma nierównoległymi bokami. Obszar trapezu można obliczyć jako iloczyn wysokości i średniej dwóch równoległych boków, zwanych również podstawami. Istnieje kilka właściwości trapezoidów, które pozwalają na określenie nieznanych parametrów w oparciu o znane czynniki, w tym miarę równoległych boków, miarę nierównoległych boków i miarę różnych kątów. Obszar trapezu, w szczególności, można uzyskać przy użyciu tych różnych właściwości, pomimo znajomości długości jednej podstawy, jeśli znana jest długość przekątnej, wysokość trapezu i jednej nierównoległej strony.
Określ daną długość jednej podstawy, wysokość trapezu i długość jednego nierównoległego boku. Załóżmy na przykład, że podano trapez o wysokości 4 cali, jednej podstawie równej 6 cali i nierównoległej stronie równej 5 cali.
Określ długość przekątnej. Przekątna to linia, która rozciąga się od jednego rogu do przeciwnego rogu w trapezie. W trapezie równoramiennym obie przekątne są równej długości. Jednak do obliczenia powierzchni potrzebna będzie tylko jedna długość. W tym przykładzie załóżmy, że trapez ma przekątną 8 cali.
Użyj twierdzenia Pitagorasa, aby określić długość nieznanej zasady. Twierdzenie Pitagorasa służy do identyfikacji nieznanych boków trójkąta prostokątnego i ma ogólną postać a ^ 2 + b ^ 2 = c ^ 2, gdzie c jest przeciwprostokątną, a ab są dwiema pozostałymi stronami. W przykładzie narysowanie linii wysokości i linii ukośnej rozciągającej się od tego samego rogu ujawnia dwa wyraźne trójkąty prawe. Następnie można zobaczyć, że suma dwóch nieznanych boków tych dwóch trójkątów jest długością nieznanej podstawy. Dlatego użycie twierdzenia Pitagorasa do znalezienia dwóch nieznanych stron i zsumowanie tych wartości skutkuje długością drugiej podstawy trapezu.
1. trójkąt: (długość nierównoległego boku) ^ 2 = (długość nieznanego boku) ^ 2 + (wysokość trapezu) ^ 2) 5 ^ 2 = (długość nieznanego boku) ^ 2 + 4 ^ 2 Długość nieznanego boku = sprt (9) lub 3 cale
Drugi trójkąt: (długość przekątnej) ^ 2 = (wysokość) ^ 2 + (długość nieznanego boku) ^ 2 8 ^ 2 = 5 ^ 2 + (długość nieznanego boku) ^ 2 Długość nieznanego boku = sqrt (39) lub około 6 cali Długość nieznanej podstawy = 6 cali + 3 cale = 9 cali
Użyj obszaru wzoru trapezoidalnego, aby znaleźć obszar. Obszar = (podstawa 1 + podstawa 2) / 2 + wysokość Obszar = (9 + 6) / 2 * 4 = 30 cali ^ 2
Zrozum, że sposobem na rozwiązanie tych problemów jest podzielenie trapezu na trójkąty prostokątne w celu ustalenia długości nieznanej podstawy. Tego rodzaju problem można rozwiązać tylko pod warunkiem uzyskania wystarczających informacji o trapezie.